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present and past engineering literature written in the English engineering system,
literature that will be used well into the future. The modern engineering student
must be bilingual in these units, and must feel comfortable with both systems.
For this reason, although many of the worked examples and end-of-the-chapter
problems in this book are in the SI units, some are in the English engineering
system of units. You are encouraged to join this bilingual spirit and to work to
make yourself comfortable in both systems.

1.5 AERODYNAMIC FORCES AND MOMENTS
At first glance, the generation of the aerodynamic force on a giant Boeing 747
may seem complex, especially in light of the complicated three-dimensional flow
field over the wings, fuselage, engine nacelles, tail, etc. Similarly, the aerody-
namic resistance on an automobile traveling at 55 mi/h on the highway involves
a complex interaction of the body, the air, and the ground. However, in these and
all other cases, the aerodynamic forces and moments on the body are due to only
two basic sources:

1. Pressure distribution over the body surface
2. Shear stress distribution over the body surface

No matter how complex the body shape may be, the aerodynamic forces and
moments on the body are due entirely to the above two basic sources. The only
mechanisms nature has for communicating a force to a body moving through a
fluid are pressure and shear stress distributions on the body surface. Both pressure
p and shear stress τ have dimensions of force per unit area (pounds per square
foot or newtons per square meter). As sketched in Figure 1.15, p acts normal to
the surface, and τ acts tangential to the surface. Shear stress is due to the “tugging
action” on the surface, which is caused by friction between the body and the air
(and is studied in great detail in Chapters 15 to 20).

The net effect of the p and τ distributions integrated over the complete body
surface is a resultant aerodynamic force R and moment M on the body, as sketched
in Figure 1.16. In turn, the resultant R can be split into components, two sets of

Figure 1.15 Illustration of pressure and shear
stress on an aerodynamic surface.

Alan SMITH
There is no explanation  of this transformation from p and τ to R.  
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Figure 1.16 Resultant aerodynamic force
and moment on the body.

Figure 1.17 Resultant aerodynamic force and the
components into which it splits.

which are shown in Figure 1.17. In Figure 1.17, V∞ is the relative wind, defined
as the flow velocity far ahead of the body. The flow far away from the body is
called the freestream, and hence V∞ is also called the freestream velocity. In
Figure 1.17, by definition,

L ≡ lift ≡ component of R perpendicular to V∞

D ≡ drag ≡ component of R parallel to V∞

The chord c is the linear distance from the leading edge to the trailing edge of
the body. Sometimes, R is split into components perpendicular and parallel to the
chord, as also shown in Figure 1.17. By definition,

N ≡ normal force ≡ component of R perpendicular to c

A ≡ axial force ≡ component of R parallel to c

The angle of attack α is defined as the angle between c and V∞. Hence, α is
also the angle between L and N and between D and A. The geometrical relation
between these two sets of components is, from Figure 1.17,

L = N cos α − A sin α (1.1)
D = N sin α + A cos α (1.2)

Alan SMITH
There is no explanation of how the resultant aerodynamic force, R, is oriented in this direction.   
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Figure 1.18 Nomenclature for the integration of pressure and shear stress distributions over
a two-dimensional body surface.

Let us examine in more detail the integration of the pressure and shear stress
distributions to obtain the aerodynamic forces and moments. Consider the two-
dimensional body sketched in Figure 1.18. The chord line is drawn horizontally,
and hence the relative wind is inclined relative to the horizontal by the angle of
attack α. An xy coordinate system is oriented parallel and perpendicular, respec-
tively, to the chord. The distance from the leading edge measured along the body
surface to an arbitrary point A on the upper surface is su; similarly, the distance
to an arbitrary point B on the lower surface is sl . The pressure and shear stress
on the upper surface are denoted by pu and τu , both pu and τu are functions of su .
Similarly, pl and τl are the corresponding quantities on the lower surface and
are functions of sl . At a given point, the pressure is normal to the surface and
is oriented at an angle θ relative to the perpendicular; shear stress is tangential
to the surface and is oriented at the same angle θ relative to the horizontal. In
Figure 1.18, the sign convention for θ is positive when measured clockwise from
the vertical line to the direction of p and from the horizontal line to the direction
of τ . In Figure 1.18, all thetas are shown in their positive direction. Now con-
sider the two-dimensional shape in Figure 1.18 as a cross section of an infinitely
long cylinder of uniform section. A unit span of such a cylinder is shown in
Figure 1.19. Consider an elemental surface area dS of this cylinder, where dS =
(ds)(1) as shown by the shaded area in Figure 1.19. We are interested in the
contribution to the total normal force N ′ and the total axial force A′ due to the
pressure and shear stress on the elemental area dS. The primes on N ′ and A′

denote force per unit span. Examining both Figures 1.18 and 1.19, we see that
the elemental normal and axial forces acting on the elemental surface dS on the
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Figure 1.19 Aerodynamic force on an element of the body surface.

upper body surface are

d N ′
u = −pudsu cos θ − τudsu sin θ (1.3)

dA′
u = −pudsu sin θ + τudsu cos θ (1.4)

On the lower body surface, we have

d N ′
l = pldsl cos θ − τldsl sin θ (1.5)

dA′
l = pldsl sin θ + τldsl cos θ (1.6)

In Equations (1.3) to (1.6), the positive directions of N ′ and A′ are those shown in
Figure 1.17. In these equations, the positive clockwise convention for θ must be
followed. For example, consider again Figure 1.18. Near the leading edge of the
body, where the slope of the upper body surface is positive, τ is inclined upward,
and hence it gives a positive contribution to N ′. For an upward inclined τ , θ would
be counterclockwise, hence negative. Therefore, in Equation (1.3), sin θ would
be negative, making the shear stress term (the last term) a positive value, as it
should be in this instance. Hence, Equations (1.3) to (1.6) hold in general (for
both the forward and rearward portions of the body) as long as the above sign
convention for θ is consistently applied.

The total normal and axial forces per unit span are obtained by integrating
Equations (1.3) to (1.6) from the leading edge (LE) to the trailing edge (TE):

N ′ = −
∫ TE

LE
(pu cos θ + τu sin θ) dsu +

∫ TE

LE
(pl cos θ − τl sin θ) dsl (1.7)

A′ =
∫ TE

LE
(−pu sin θ + τu cos θ) dsu +

∫ TE

LE
(pl sin θ + τl cos θ) dsl (1.8)

Alan SMITH
This diagram shows pressure p, now oriented away from the surface, opposite to the direction in Fig. 1.15. 
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Figure 1.20 Sign convention for aerodynamic moments.

In turn, the total lift and drag per unit span can be obtained by inserting Equa-
tions (1.7) and (1.8) into (1.1) and (1.2); note that Equations (1.1) and (1.2) hold
for forces on an arbitrarily shaped body (unprimed) and for the forces per unit
span (primed).

The aerodynamic moment exerted on the body depends on the point about
which moments are taken. Consider moments taken about the leading edge. By
convention, moments that tend to increase α (pitch up) are positive, and moments
that tend to decrease α (pitch down) are negative. This convention is illustrated
in Figure 1.20. Returning again to Figures 1.18 and 1.19, the moment per unit
span about the leading edge due to p and τ on the elemental area dS on the upper
surface is

d M ′
u = (pu cos θ + τu sin θ)x dsu + (−pu sin θ + τu cos θ)y dsu (1.9)

On the bottom surface,

d M ′
l = (−pl cos θ + τl sin θ)x dsl + (pl sin θ + τl cos θ)y dsl (1.10)

In Equations (1.9) and (1.10), note that the same sign convention for θ applies
as before and that y is a positive number above the chord and a negative number
below the chord. Integrating Equations (1.9) and (1.10) from the leading to the
trailing edges, we obtain for the moment about the leading edge per unit span

M ′
LE =

∫ TE

LE
[(pu cos θ + τu sin θ)x − (pu sin θ − τu cos θ)y] dsu

(1.11)

+
∫ TE

LE
[(−pl cos θ + τl sin θ)x + (pl sin θ + τl cos θ)y] dsl

In Equations (1.7), (1.8), and (1.11), θ , x , and y are known functions of s
for a given body shape. Hence, if pu , pl , τu , and τl are known as functions of s
(from theory or experiment), the integrals in these equations can be evaluated.
Clearly, Equations (1.7), (1.8), and (1.11) demonstrate the principle stated earlier,
namely, the sources of the aerodynamic lift, drag, and moments on a body are
the pressure and shear stress distributions integrated over the body. A major goal
of theoretical aerodynamics is to calculate p(s) and τ (s) for a given body shape
and freestream conditions, thus yielding the aerodynamic forces and moments
via Equations (1.7), (1.8), and (1.11).

As our discussions of aerodynamics progress, it will become clear that there
are quantities of an even more fundamental nature than the aerodynamic forces
and moments themselves. These are dimensionless force and moment coefficients,
defined as follows. Let ρ∞ and V∞ be the density and velocity, respectively, in
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obtain the lift—is the essence of the circulation theory of lift in aerodynamics.
Its development at the turn of the twentieth century created a breakthrough in
aerodynamics. However, let us keep things in perspective. The circulation theory
of lift is an alternative way of thinking about the generation of lift on an aero-
dynamic body. Keep in mind that the true physical sources of aerodynamic force
on a body are the pressure and shear stress distributions exerted on the surface of
the body, as explained in Section 1.5. The Kutta-Joukowski theorem is simply an
alternative way of expressing the consequences of the surface pressure distribu-
tion; it is a mathematical expression that is consistent with the special tools we
have developed for the analysis of inviscid, incompressible flow. Indeed, recall
that Equation (3.140) was derived in Section 3.15 by integrating the pressure dis-
tribution over the surface. Therefore, it is not quite proper to say that circulation
“causes” lift. Rather, lift is “caused” by the net imbalance of the surface pres-
sure distribution, and circulation is simply a defined quantity determined from
the same pressures. The relation between the surface pressure distribution (which
produces lift L ′) and circulation is given by Equation (3.140). However, in the
theory of incompressible, potential flow, it is generally much easier to determine
the circulation around the body rather than calculate the detailed surface pressure
distribution. Therein lies the power of the circulation theory of lift.

Consequently, the theoretical analysis of lift on two-dimensional bodies in
incompressible, inviscid flow focuses on the calculation of the circulation about
the body. Once ! is obtained, then the lift per unit span follows directly from
the Kutta-Joukowski theorem. As a result, in subsequent sections we constantly
address the question: How can we calculate the circulation for a given body in a
given incompressible, inviscid flow?

3.17 NONLIFTING FLOWS OVER ARBITRARY
BODIES: THE NUMERICAL SOURCE
PANEL METHOD

In this section, we return to the consideration of nonlifting flows. Recall that
we have already dealt with the nonlifting flows over a semi-infinite body and a
Rankine oval and both the nonlifting and the lifting flows over a circular cylinder.
For those cases, we added our elementary flows in certain ways and discovered
that the dividing streamlines turned out to fit the shapes of such special bodies.
However, this indirect method of starting with a given combination of elementary
flows and seeing what body shape comes out of it can hardly be used in a practical
sense for bodies of arbitrary shape. For example, consider the airfoil in Figure 3.37.
Do we know in advance the correct combination of elementary flows to synthesize
the flow over this specified body? The answer is no. Rather, what we want is a
direct method; that is, let us specify the shape of an arbitrary body and solve for the
distribution of singularities which, in combination with a uniform stream, produce
the flow over the given body. The purpose of this section is to present such a direct
method, limited for the present to nonlifting flows. We consider a numerical
method appropriate for solution on a high-speed digital computer. The technique

Alan SMITH
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The source of the aerodynamic force is explained in Sect 1.5!!!!   
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